People Tracking with a Mobile Robot: a Comparison of Kalman and Particle Filters

نویسندگان

  • Nicola Bellotto
  • Huosheng Hu
چکیده

People tracking is an essential part for modern service robots. In this paper we compare three different Bayesian estimators to perform such task: Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Sampling Importance Resampling (SIR) Particle Filter. We give a brief explanation of each technique and describe the system implemented to perform people tracking with a mobile robot using sensor fusion. Finally, we report several experiments where the three filters are compared in terms of accuracy and robustness. In particular we show that, for this kind of applications, the UKF can perform as well as a particle filter but at a much lower computational cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters

Modern service robots will soon become an essential part of modern society. As they have to move and act in human environments, it is essential for them to be provided with a fast and reliable tracking system that localizes people in the neighbourhood. It is therefore important to select the most appropriate filter to estimate the position of these persons. This paper presents three efficient i...

متن کامل

Monocular Vision Tracking Based on Hybrid Particle Filters for a Person Following Robot

A person following behaviour for a mobile robot with a new vision tracking algorithm is presented in this paper. According to the different characteristics of particle filter and Kalman filter, a novel approach of target tracking based on hybrid particle filters is applied to process the target object’s position and shape component respectively, whose state updating is on the basis of data fusi...

متن کامل

Mobile Robot Navigation Error Handling Using an Extended Kalman Filter

Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...

متن کامل

Fixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets

Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...

متن کامل

Trajectory Tracking of a Mobile Robot Using Fuzzy Logic Tuned by Genetic Algorithm (TECHNICAL NOTE)

In recent years, soft computing methods, like fuzzy logic and neural networks have been  presented and developed for the purpose of mobile robot trajectory tracking. In this paper we will present a fuzzy approach to the problem of mobile robot path tracking for the CEDRA rescue robot with a complicated kinematical model. After designing the fuzzy tracking controller, the membership functions an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007